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Mechanical forces generated by contractile cells allow the cells to sense their environment and to interact
with other cells. By locally pulling on their environment, cells can sense and respond to mechanical features
such as the local stress �or strain�, the shape of a cellular domain, and the surrounding rigidity; at the same
time, they also modify the mechanical state of the system. This creates a mechanical feedback loop that can
result in self-polarization of cells. In this paper, we present a quantitative mechanical model that predicts the
self-polarization of cells in spheroidally shaped domains, comprising contractile cells and an elastic matrix,
that are embedded in a three-dimensional, cell-free gel. The theory is based on a generalization of the known
results for passive inclusions in solids to include the effects of cell activity. We use the active cellular suscep-
tibility tensor presented by Zemel et al. �Phys. Rev. Lett. 97, 128103 �2006�� to calculate the polarization
response and hence the elastic stress field developed by the cells in the cellular domain. The cell polarization
is analyzed as a function of the shape and the elastic moduli of the cellular domain compared with the cell-free
surrounding material. Consistent with experiment, our theory predicts the development of a stronger contractile
force for cells in a gel that is surrounded by a large, cell-free material whose elastic modulus is stiffer than that
of the gel that contains the cells. This provides a quantitative explanation of the differences in the development
of cellular forces as observed in free and fixed gels. In the case of an asymmetrically shaped �spheroidal�
domain of cells, we show that the anisotropic elastic field within the domain leads to a spontaneous self-
polarization of the cells along the long axis of the domain.
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I. INTRODUCTION

Mechanical forces provide an important route for commu-
nication among cells, and between cells and their environ-
ment �1–3�. Many cell types, including muscle cells, fibro-
blasts, endothelial cells, and others, generate significant
contractile forces as part of their physiological function.
These forces are also thought to serve a more general pur-
pose in living cells, since they provide the cells with a means
to sense the elastic nature of their environment �1–5�. Purely
mechanical features, such as the rigidity of the medium in
which the cells are found, and the existence of elastic
stresses �or strains�, have been shown to affect important
cellular processes, such as changes in cell shape and align-
ment, cell division, and even differentiation and apoptosis
�1–3,6�. Because the propagation of elastic forces within tis-
sues can be long ranged, the local stress field sensed by the
cells also reflects global mechanical characteristics of the
tissue, such as its shape and its relative stiffness compared to
its surroundings. The importance of these physical effects to
tissue morphogenesis, cancer development, and tissue engi-
neering has been pointed out by others �7–12�. In the theory
presented below, we show that changes in the active cell
contractility in response to the local elastic stress can lead to
a spontaneous cellular alignment �13� in anisotropically
shaped domains of cells.

The contractile force in cells is generated by the actin-
myosin stress fibers that generally connect opposite sides of
a cell and terminate at specific protein complexes, called
focal adhesions, that anchor the cell to its surroundings �14�.
In many types of contractile cells, mechanical forces were
found to induce an active reorganization of the cellular cy-
toskeleton, including the focal adhesions and stress fibers,
thus leading to changes in the forces �in both magnitude and
direction� exerted by the cells on the surrounding medium

�15,16�. For static or quasistatic strain �on the scale of tens of
minutes�, cells generally align parallel to the direction of
principal strain �17–19�, while for cyclic strain, cells align
away from the direction of the applied stretch �6,20–22�. The
elastic field that influences the cell polarization can either be
applied externally or be generated internally by the contrac-
tile forces due to the cells. In this latter case, the cell polar-
ization changes in response to the stresses in the surround-
ings that originate in the forces produced by the cells
themselves. We therefore term this effect self-polarization.
This response occurs at relatively long times �typically tens
of minutes �12��, after the cells have had enough time to
reorganize their stress fibers and adhesions in response to
stress; it is therefore relevant for the cellular response to a
static or quasistatic field rather than to a rapidly varying
�e.g., on the scale of hertz� field. This is also consistent with
the experiments we cite below.

Self-polarization can be pronounced when the surround-
ing matrix is rigid and completely opposes the contractile
forces generated by the cells �3�. The clearest demonstration
of this behavior is the difference between the behavior of
cells in fixed and floating gels �23�. Experiments on fibro-
blasts in a fixed gel with cylindrical symmetry showed that,
while the cells developed pronounced stress fibers in random
directions, the magnitude of their contractility was larger
than that of cells placed in a freely floating gel in solution
�23�. In this case, the reorganization of the cellular force
pattern of each individual cell in response to the mean elastic
stress produced by the ensemble of cells involves an overall
change in the magnitude of the force exerted by the cells on
the medium �i.e., changes in the size and/or number of the
stress fibers and focal adhesions�; it does not involve a
change in the orientation of the cells.

However, in cases where the elastic field is not symmet-
ric, for example due to nonsymmetric tractions along the
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different gel boundaries, cells self-polarize preferentially
along one direction, the stiffer direction �4,19,24�. In a rect-
angular gel that was held at two opposite boundaries and was
free at the other two, fibroblasts were observed to self-
polarize along the stiffer direction, namely, normal to the
fixed boundaries �19�. In another experiment, fibroblasts
were seen to spontaneously self-polarize perpendicular to a
boundary with a more rigid matrix, and parallel to a bound-
ary with a softer matrix �24�.

Furthermore, elastic interactions between cells can also
affect the local organization of cells �4�. For example, it was
observed that cells often align head to tail, forming stringlike
structures �3,17�, where each cell orients along the tensile
field produced by its neighbors. In a recent study by Nelson
et al. �11�, in which patches of cells with well-defined shapes
were deposited on a two-dimensional gel, a spontaneous pat-
terning of the cells was observed. These observations are
important because cellular patterning, and polarization in
particular �which involves a morphological change in the
cellular cytoskeleton�, was shown to correlate with other cel-
lular processes such as cell division �1,3,11,17,19�. In addi-
tion, the experiments of Nelson et al. �11� showed that the
level of cell proliferation, and the forces the cells exert, de-
pended on the shape of the cellular domain. The authors
concluded that the long-range elastic interactions between
the cells are responsible for the observed shape dependence.

In the absence of external forces, a composite system of
cells and gel is isotropic �and homogeneous on scales much
larger than the cell size�, since we consider systems in which
the cells are uniformly distributed and are either randomly
oriented or appear with rounded morphologies �18,23�. The
spatially averaged, mechanical response of such an isotropic
cell-gel system can be characterized by two independent,
measurable parameters �25�. These so-called elastic suscep-
tibilities, denoted here by �s and �v, reflect the distinctive
response of a particular cell type to pure shear and pure
volume deformations, respectively. Cells that comprise tis-
sues �and in some in vitro experiments as well� are often
segregated and organized in well-defined domains that may
be elastically distinct from their surroundings. An important
example is a tumor that is composed of cancer cells and an
extracellular matrix that is elastically distinct from the sur-
rounding tissue; this often forms the basis of tumor diagnosis
�1�. Other examples include fibroblasts in tendons, smooth
muscle and endothelial cells in blood vesicles, or cell aggre-
gates in artificial gels �26,27�. The mechanical response of
the cells in these cases is dictated not only by their charac-
teristic elastic susceptibilities ��s and �v�, but also by the
geometry and elasticity of the surrounding matrix, which de-
termine the local elastic field. Since the cellular forces con-
stantly adjust to stress fields that are, in part, determined by
these forces, a theory that predicts the resulting stationary
behavior of the system requires a self-consistent calculation.

In this paper, we present a quantitative theory that predicts
the self-polarization of cells in cell-gel domains that are em-
bedded in a cell-free matrix �see Fig. 1�, as a function of the
domain shape and its elastic properties relative to its sur-
roundings. For simplicity, we focus on spheroidal domains;
in that case, the elastic strain field developed inside the do-
mains is constant �on length scales much larger than the cell

size�. The dependence of the field in a polarizable domain on
the domain shape is given in electrostatic �magnetostatic�
theory by the depolarization �demagnetization� factors �28�.
In elastic systems, the Eshelby tensor plays an analogous
role �29�. Our understanding of the properties of active cells
in cellular domains is based on a generalization of the known
results for passive inclusions in solids to include the effects
of cell activity. We predict phenomena that are unique to
systems with feedback and self-regulation, such as the self-
polarization of cells. In particular, we show that the sponta-
neous polarization of the cellular forces �as determined by
the direction of their focal adhesions and stress fibers� is
determined by the domain shape. Our results are consistent
with experiments that demonstrated the self-polarization of
cells in anisotropic mechanical environments �11,19�, as well
as an experiment by Eastwood et al. �17� that measured the
dependence of cell polarization on the aspect ratio of a rect-
angular gel. The differences in the development of cellular
force in fixed and floating gels �23� �see above� may also be
quantified by our model. Finally, we show that the relation
between the two elastic susceptibilities �s and �v reflects
different mechanisms of cell polarization. We discuss two
plausible mechanisms for cell polarization: orientational po-
larization and axially induced polarization �see Fig. 2�. We
outline their distinctive consequences and predict their ef-
fects on experiments.

II. THEORY

For simplicity we consider a spheroidal domain compris-
ing contractile cells �such as muscle cells, fibroblasts, or en-
dothelial cells� in an elastic, gel-like matrix �30�; this cellular
domain is embedded in a three-dimensional, cell-free �31�
matrix of macroscopic dimensions �see Fig. 1 and relevant
examples above�. We assume that the cellular domain is
small compared with the dimensions of the surrounding gel,
but much larger than the cell size, so that it can be treated as
a uniform or homogeneous composite material consisting of
active cells embedded at some finite density in a gel. In
many cases of experimental and biological interest, the elas-
tic properties of such cellular domains are different from

D

FIG. 1. Schematic illustration of a spheroidal domain of con-
tractile cells, incorporated in a cell-free, elastic matrix. In this case,
the uniform gray color of the background indicates that the elastic,
gel-like matrix in the cellular domain and the surrounding, cell-free
matrix are the same material and have the same elastic moduli.
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those of their surroundings. Nevertheless, one can, in prin-
ciple, synthesize the surrounding gel to have any desired
elastic properties. To simplify the discussion below, we first
consider the idealized situation in which the cellular domain
and its surroundings are characterized by the same elastic
moduli—in general, this is denoted by a fourth-rank tensor
C. Afterward, we generalize this theory to treat the more
complex case in which the elastic moduli of the cellular do-
main and its surroundings are different.

As will be shown below, a domain containing contractile
cells that pull on their surroundings acts in a manner that is
similar, in some respects, to an elastic �misfit� inclusion in a
homogeneous solid. However, there are important differ-
ences that make the case of cellular inclusions unique com-
pared with the case of passive inclusions: the forces pro-
duced by the cells are constantly regulated and modified in
response to environmental stimuli, such as the local strain or
stress field. Thus, unlike passive inclusions, a domain con-
taining contractile cells embedded in an elastic matrix can
actively self-polarize in the elastic field that arises from the
traction forces �19,23� produced by the cells themselves.
This will be discussed in more detail below.

The long-range, elastic deformations caused by the con-
tractile activity of each cell are determined by the contribu-

tion of the force dipole tensor, pij =�f ilj, where f� and l� are
the force at, and the radius vector to, each adhesion contact
of the cell with its surroundings; the sum is over all such
contacts �5�. The cellular dipole tensor pij is not necessarily a
constant. Many cell types modulate both the size and orien-
tation of their focal adhesions and stress fibers in response to
changes in the local stress, thereby changing the dipole ten-
sor pij. These changes are often observed to be accompanied
by global changes in the cell shape and alignment. In par-
ticular, cell polarization can be related to a change in cell
shape, typically, from round to more elongated �or bipolar�
morphologies �17�, or by an overall reorientation of the cell
major axis �18� �cf. Fig. 2�. Nevertheless, while in general

the cellular force pattern of contractile cells is coupled to
shape changes, no systematic quantification of this relation
has yet been reported. Thus, we limit our focus to theoretical
predictions of changes in the average force dipole �pij� rather
than to changes in cell shape. As we shall see below, mea-
surement of the two independent cell susceptibility param-
eters �s and �v may allow us to distinguish between the two
different polarization schemes mentioned above.

Cell polarization occurs regardless of whether the polar-
izing field is externally applied �17,18�, or internally gener-
ated by the cells themselves �19,23�. To quantitatively ac-
count for the cellular polarization response in different
experimental situations, it is important to define an appropri-
ate reference state with respect to which the changes in the
cellular dipoles should be measured. Contractile cells exert
finite forces even in the absence of any external forces �23�.
We designate the corresponding, force-free value of the di-
pole tensor of each cell by pij

0 . The force-free situation is
relevant for the case where the cellular domain is freely
floating in solution and not surrounded by an elastic material;
in this case, the system can freely adjust to the forces pro-
duced by the cells. The resulting value of the dipole tensor
defines the reference state quantity pij

0 of each cell. In the rest
of this paper, we focus on the effects that arise when the
force-free cellular domain is embedded in a macroscopically
large elastic matrix. We calculate the change in the mean
cellular dipole tensor �pij�, compared with the reference state
in which each dipole has the value pij

0 . Since we assume that
in the reference state the cells are randomly distributed, the
reference state domain will deform uniformly and isotropi-
cally until mechanical equilibrium is reached in which the
cellular forces are balanced by the stresses due to the sur-
rounding elastic medium. In the reference state, the average
�“hydrostatic”� stress �ij

0 and strain uij
0 produced by the cells

are given by

�ij
0 = ��pij

0 � =
�p0

3
�ij and uij

0 = C−1�ij
0 =

�p0

9�
�ij , �1�

where p0 is the average dipole strength in the ensemble of
cells, and � is the bulk modulus of the gel in which the cells
are embedded. Here and everywhere below, we use boldface
letters to designate fourth-rank tensors and a product of the
form Agij denotes Aijklgkl. Similarly, ABgij =AijmnBmnklgkl,
where summation over repeated indices is implied. The mag-
nitude of the isotropic stress in the reference state is given by
the product of the number of cells per unit volume, �, and the
magnitude of the average compressional stress per cell,
which is proportional to p0.

Since the elastic deformations of the cells are long range,
the elastic interactions between the cells are mediated by
both the gel of the cellular domain and the surrounding, cell-
free, elastic matrix. The presence of the surrounding matrix
restricts the allowable deformation of the cellular domain
and provides a restoring force that, like an applied field, can
give rise to an active self-polarization of the cells. Further-
more, since the propagation of the elastic stress in the sur-
roundings and within the cellular domain depends on the
shape of the cellular domain, the extent of self-polarization

Orientational Polarization Axially Induced Polarization

a.

b.b.

a.

FIG. 2. �Color online� Schematic illustration of two suggested
polarization mechanisms. a and b are the initial and final cell con-
figurations. The black �thin� and red �thick� arrows show the direc-
tions of the cellular stress and the applied load, respectively. The
left panel corresponds to �v=0 and the right to �v=�s �see Appen-
dix A�.
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of the cells is also shape dependent. This effect is a direct
consequence of the long-range nature of the elastic interac-
tion between the cells.

We define uij
c as the average strain produced by the trac-

tion forces arising from the entire ensemble of cells, and uij
a

as an additional strain that results from externally applied
forces. Together, these sources give rise to an excess strain
�relative to the reference state� that we denote as uij, where

uij = uij
tot − uij

0 = uij
a + uij

c − uij
0 �2�

�recall that uij
0 =�C−1�pij

0 ��. The excess strain may give rise to
active changes in the cellular force pattern that modify the
magnitude and orientation of the cellular dipolar tensor;
these result in self-polarization of the cells. For weak enough
fields, we can assume that, on the average, the polarization
response of the cells is linearly related to the excess strain
�32�; this is stated mathematically as follows �25�:

Pij = ���pij� − �pij
0 �� = − ��ij = − �Cuij , �3�

where Pij is termed the polarization stress �in analogy to the
polarization field in electrostatics�, and �ij =�ij

tot−�ij
0 =Cuij is

the excess stress, relative to the reference state. The fourth-
rank tensor � is the cellular susceptibility tensor, which ac-
counts for the active response of the cell �and the reorgani-
zation of its focal adhesions and stress fibers� in the presence
of a local stress. This tensor contains all the effects of the
elastic interactions among the cells that influence the polar-
ization response of the cells to a local elastic field—whether
it be applied or internally generated—above and beyond
those that exist in the reference state. In a recent paper �25�,
we presented a microscopic, statistical mechanics theory
from which the susceptibility tensor could be related to other
known properties of the cell and the matrix. In general, �
depends on the particular type of cell and the elastic proper-
ties of the cellular domain; the symmetry characteristics of �
reflect the mechanism by which the cells polarize �see Fig. 2
and Appendix A�.

Equation �3� shows that the average of the cellular dipole
tensor �pij� depends on the excess strain in the medium. The
latter �see Eq. �2��, in turn, depends on the cellular strain and
hence on �pij� itself. To evaluate �pij� self-consistently, we
first calculate the strain field �or the deformation� uij

c due to
the deformations induced by the force dipoles that are local-
ized within the cellular domain; however, this expression
gives the strain in the entire sample. This is done by integrat-
ing the strain contributions from all the dipoles within the
cellular domain D, as follows:

uij
c �r� = ��

D

Gil,jk��r,r���plk�r���d3r�

= ��plk��
D

Gil,jk��r,r��d3r�, �4�

where the tensor Gij�r ,r��=Gij�	r−r�	� is the Green’s func-
tion �33� for a point force in an infinite, three-dimensional,
homogeneous, and isotropic medium �34�. The set of sub-
scripts that follow the comma in Eq. �4�, j and k�, denote
differentiation of the Green’s function with respect to r� and

r� �, respectively. The second equality in Eq. �4� arises from
the assumption that the cells are distributed homogeneously,
so that, within the cellular domain, the average of the dipole
tensor is position independent. The subscript D on the inte-
grals denotes that the integration is only over the volume of
the domain that contains the cells and not over the surround-
ing, cell-free matrix.

The integral in Eq. �4� has been calculated for ellipsoidal
domains by Eshelby �35�. The strain inside the cellular do-
main may be expressed in terms of the Eshelby tensor S as
follows:

uij
c = �SC−1�pij� �5�

�36�. Sufficiently far from the domain boundary, 	r	 / 	rD	
→�, the strain field due to the cells, uij

c �r�, vanishes �37� and
only the applied field uij

a remains. Inside the domain, namely,
r�D, uij

c �r� is a constant �35�. This result is consistent with
the assumption expressed in the second equality of Eq. �4�
that the domain is uniformly polarized.

The susceptibility tensor �see Eq. �3�� allows us to express
the cellular strain uij

c in terms of the reference state strain
uij

0 =�C�pij
0 � and the excess strain uij =uij

tot−uij
0 ; we find uij

c

=S�uij
0 −�uij�. Substituting that relation into Eq. �2� results in

the following self-consistent equation for the total strain field
uij

tot in the cellular domain:

uij
tot = uij

a + S�uij
0 − ��uij

tot − uij
0 �� . �6�

Solving for uij
tot, we obtain

uij
tot = A�uij

a + S�I + ��uij
0 � , �7�

where

A = �I + S��−1 �8�

and I is the fourth-rank symmetric unit tensor �38�.
The overall strain in the cellular domain is now expressed

in terms of the applied strain and the cellular strain in the
reference state �cf. Eq. �1��. Both these quantities can be
measured in separate experiments. The contribution of cell
interactions is incorporated in the susceptibility tensor �,
which can depend on the concentration of cells �25�, and its
dependence on the shape of the cellular domain enters
through the Eshelby tensor S. Note that, even if uij

0 were
zero, the cells could still polarize �in principle� due to the
applied strain, and would then contribute to the total strain
through the dependence of A on �. However, without the
intrinsic cell contractility �namely, if pij

0 =uij
0 =0� the cells

cannot self-polarize �see Eqs. �9� and �10� below�.
As noted above, an active cellular domain is distinguished

from a passive inclusion in a solid by its ability to actively
polarize. By setting the susceptibility tensor to zero, �=0,
we recover the familiar result of Eshelby �35�, uij

c =uij
tot−uij

a

=Suij
0 relating the free transformation strain uij

0 of the inclu-
sion in solution to the actual strain it produces in the elastic
matrix, uij

c . Thus, the ability of the “inclusion” to polarize
requires our generalization of the usual theory of passive
inclusions to include the active nature of cellular elastic di-
poles.
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Furthermore, by substituting Eq. �7� in Eq. �2� and using
the relation A−1= �I+S�� above we find uij =uij

tot−uij
0 =A�uij

a

+ �S−I�uij
0 �; inserting that into Eq. �3� we obtain an expres-

sion for the cellular polarization stress:

Pij = − �CA�uij
a + �S − I�uij

0 � . �9�

This equation predicts an interesting effect: the cells polarize
due to the traction forces that they themselves exert on the
surrounding matrix; this occurs even in the absence of exter-
nal stress. That is, there is a nonzero value of Pij even when
uij

a =0. This response, which we call self-polarization, is
given by the second term in Eq. �9�:

Pij
self = −

�p0

9�
��CA�S − I���ij . �10�

Generalization of the model: Cellular domain and its
surroundings have different elastic moduli

The results presented above are readily generalized for
situations in which the average elastic moduli of the cellular
domain are different from those of the surrounding matrix.
This problem is similar, but not identical, to the so-called
inhomogeneous inclusion problem in solids �39�, in which an
elastic inhomogeneity does not perfectly fit �in size or shape�
within the solid, and exerts a force on the inclusion-matrix
boundary. The difference between the cellular case and the
case of a “dead” inclusion arises, as noted previously, from
the ability of the cells to actively respond to stresses that can
arise, at least in part, from forces generated by the cells
themselves. The generalization described in this section is
important for many realistic situations in which a tissue with
one cell type is surrounded by another tissue with different
elastic moduli. The limiting cases in which the elastic moduli
of the surrounding matrix are either zero or infinity describe
the situation of free �e.g., floating� or fixed �e.g., glued to a
rigid surface� cellular domains, respectively �cf. Ref. �23��
�for cellular domains with no surrounding matrix�.

We denote the elastic constants of the cellular domain and
of the surrounding matrix by Cc and Cm, respectively. The
calculation of uij

c by use of the Green’s function for an iso-
tropic and homogeneous medium, as in Eq. �4�, no longer
holds because the system is no longer homogeneous. This
difficulty is overcome by using the so-called equivalent in-
clusion method of Eshelby �35,39�. To this end, we first per-
form the previous calculations for an artificial, homogeneous
system that has the elastic moduli Cm appropriate to the ma-
trix. The excess field in the cellular domain D due to the
difference in the elastic moduli of the cellular domain and
the surroundings is then accounted for by introducing an
artificially polarizable inclusion in D, which has the matrix
elastic moduli Cm, and exerts a force on the boundary of the
cellular domain D �39�.

Since we consider ellipsoidally shaped domains, the ex-
cess field in the domain D is uniform �35�; and if, for in-
stance, D is stiffer than its surroundings, the strain within it
is smaller by a constant amount, and vice versa. This excess
strain is “induced” only when the cellular domain is subject

to a force from the surroundings �that originates from either
the active forces of the cells or from external sources�. The
magnitude of this strain is proportional to the difference be-
tween the elastic moduli of the cellular domain and the sur-
roundings, Cc−Cm. For a given average value of the cellular
dipole �pij�, the total restoring stress exerted by the surround-
ings on the cellular domain is �ij

tot−��pij�=�ij − Pij, where
�ij

tot=C−1uij
tot is the total stress �since ��pij� would be the do-

main stress in the absence of the matrix�.
Denoting the excess strain due to the difference between

the elastic moduli of the cellular domain and the surrounding
matrix �the excess inhomogeneity strain� by uij

ih, and the in-
duced polarization stress that �artificially� generates this
strain by Pij

ih, we have �39� �cf. Eqs. �3� and �5��

uij
ih = SmCm

−1Pij
ih �11�

and

Pij
ih = − �ih��ij − Pij� , �12�

where

�ih = �Cc − Cm�Cm
−1 �13�

and the subscript on Sm indicates that the Eshelby tensor is
evaluated using the elastic moduli of the surrounding, cell-
free matrix. The tensor Pij

ih is known in the theory of com-
posites as the polarization stress �39�. This tensor is a math-
ematical device that reflects a purely mechanical and
generally fast response of the medium. This is in contrast
with the polarization response Pij, which reflects an active
biological response of the cells to applied forces; these may
take hours and even days to be established, since they in-
volve the reorganization of the focal adhesions and stress
fibers. Thus, experiments done on a short time scale would
show only the passive elastic response of the cellular do-
main, while those done on long time scales would also mea-
sure the effects due to the active polarization response.

Including the inhomogeneity field uij
ih in the total strain,

uij
tot=uij

a +uij
c +uij

ih, one may repeat the previous derivation to
find generalized expressions for the total strain uij

tot and cell
polarization Pij for the case where the cellular domain and
surrounding matrix have different elastic properties. We find

uij
tot = A�uij

a + Sm�I + ���I + �ih�uij
0 � �14�

and

Pij = − �CcA�uij
a + �Sm − I�uij

0 � . �15�

The strain in the reference state uij
0 = ��p0 /9�c��ij is calcu-

lated using the bulk modulus of the cellular domain. The
calculations yield a generalization of the expression for A:

A = 
I + Sm��I + ��Cc − Cm�Cm
−1�−1. �16�

In the usual problem of elastic inhomogeneity, the tensor
A= �I+Sm�Cc−Cm�Cm

−1�−1 �which is often termed the stress-
concentration tensor� relates the strain inside an inhomoge-
neity to the applied strain through uij

tot=Auij
a . This is the situ-

ation for passive inhomogeneities, applicable to noncon-
tractile cells that do not actively exert forces, and hence both
the reference state strain uij

0 and the active susceptibility �
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are zero. If only � is zero but not uij
0 �corresponding for

instance to the case that the cells are active but the measure-
ment is performed on a time scale that is too short to allow
them to respond�, the system describes a special case of a
passive inhomogeneous inclusion �namely, an inclusion that
misfits in shape or size in the matrix and whose elastic prop-
erties are different from those of the surroundings�, and uij

0 is
the free transformation strain of the inclusion �39�. However,
for the case of active inclusions relevant to biological cells,
the equations describing passive inclusions no longer apply.
Equation �16� shows that the overall elastic response of a
system with active, contractile cells can be described by an

effective set of elastic moduli �25�, given by C̃c= �I+��Cc;
in that case, the tensor A can be interpreted as an effective
stress-concentration tensor. Note that, even for the simple
case in which the elastic moduli of the cells and the matrix
are identical �i.e., Cc=Cm�, the cellular domain behaves like
an elastic inhomogeneity on long time scales; and one may

replace � by �C̃c−Cc�Cc
−1 in Eqs. �8� and �16�.

III. RESULTS AND DISCUSSION

An important prediction of our theory is that an ensemble
of contractile cells localized in an asymmetrically shaped
domain, which is surrounded by a compliant matrix, will
spontaneously polarize in a particular direction, due to the
anisotropic stresses exerted on the cellular domain by the
surrounding matrix. The phenomenon of self-polarization is
often encountered in experiments with active cells, in both
two and three dimensions; for example, in �11,17,19�. Nelson
et al. �11� observed a spontaneous patterning of cells within
microfabricated patches of cells that were deposited on a
two-dimensional gel. The authors also found that the forces
produced by the cells depended on the shape of the micro-
fabricated patch of cells. Takakuda and Miyairi �19� exam-
ined rectangular, cell-populated gels and used a combination
of fixed and free boundaries to produce an anisotropic field
in the samples; however, no external forces were applied. In
these experiments the cells spontaneously polarized in paral-
lel to the stiffer direction �perpendicular to the fixed bound-
aries�. Our theory considers the effects of an ensemble of
polarizable, force dipoles to model the mechanical activity of
cells and provides a physical and quantitative explanation for
the phenomena of self-polarization. We focus on a particular
case in which the shape of the cellular domain is the cause of
the anisotropy of the elastic field. In other systems, for in-
stance, the experiment of Takakuda and Miyairi, the aniso-
tropy of the field is produced by the boundary conditions. In
real tissues the elastic fields are anisotropic as a rule and not
as an exception; thus this physical mechanism of self-
polarization may play an important role for the self-organ-
ization of tissues.

The prediction of self-polarization for an ensemble of di-
poles is unique to the elastic system in which the force dipole
is a tensor of rank 2 and not a vector. An analogous effect
does not occur for the vector dipoles of electrostatics or mag-
netostatics, where the field due to opposing dipoles sums to
zero, and thus an isotropic ensemble of dipoles �e.g., a di-

electric� produces a vanishing macroscopic field in the ab-
sence of an external field. In contrast, an isotropic ensemble
of force dipoles does produce a finite strain in the absence of
an external field; it is the isotropic reference-state strain uij

0

= ��p0 /9�c��ij. No symmetry breaking occurs, however, in
the absence of a surrounding matrix. The spontaneous sym-
metry breaking, which leads to cell self-polarization, arises
from the anisotropic elastic restoring force exerted by the
surrounding matrix on the anisotropically shaped cellular do-
main. This effect, however, does not occur for a completely
incompressible ��c→�� cellular domain. While some mate-
rials are indeed close to the incompressible limit, on the time
scale of hours or even days relevant to cellular systems, cel-
lular domains can often be regarded as compressible since
experiments show that cells actively compress the gels in
which they are placed �40,41�. In the limiting cases that the
surroundings are infinitely rigid �fixed boundaries�, or infi-
nitely soft �free boundaries�, no symmetry breaking �i.e., an-
isotropic polarization� is expected; since in the latter case the
restoring force due to the surroundings is perfectly isotropic
and in the former it is zero. Nevertheless, in the case of fixed
boundaries, the dipolar strength of each cell may increase to
a maximum value, depending on the mechanism of cell po-
larization, as explained below.

A. Shape dependence

To illustrate the shape dependence of the spontaneous po-
larization induced by the surrounding matrix we consider
spheroidal cellular domains whose principal axes are ori-
ented parallel to a Cartesian coordinate system �42�; i.e., the
surface of the domain is given by the equation

x2

a2 +
y2

a2 +
z2

c2 = 1. �17�

The shape of the domain is then uniquely determined by the
aspect ratio r=c /a.

Figure 3 shows the �normalized� xx �dashed, red� and zz
�dot-dashed, green� elements of the self-polarization tensor
Pij

self and its trace �solid, black�, as a function of the aspect
ratio. The left and right panels are for two distinct cellular
polarization mechanisms that are schematically illustrated in
Fig. 2 and defined in Appendix A. The right panel is for a
pure orientational polarization mechanism, in which only the
orientation of the cellular dipole changes but its magnitude is
fixed. The left panel is for an axially induced mechanism, in
which the cellular stress enhances in the direction of the
excess stress �relative to the reference state�. These two
mechanisms correspond to different values of the two com-
ponents of the susceptibility tensor �v and �s. Recall that the
self-polarization tensor defined, for the case of zero applied
stress ��ij

a =0�, by Pij
self =���pij�− �pij

0 ��, is a measure of the
increase of the cellular dipole relative to the reference state
in which the cells are isotropically distributed in a free
sample. In Appendix B we provide analytic equations for the
elements of the self-polarization tensor and the total strain
uij

tot for three special values of r=c /a: disks �r→0�, spheres
�r=1�, and rods �r→��.
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A prediction that is common to both panels of Fig. 3 is
that the cells tend to polarize parallel to the long axis of the
spheroid. We first consider the orientational polarization case
�left panel�. The black curve shows that there is no change in
the magnitude of the mean cellular dipole, as assumed by
considering �v=0. For oblate �disk-shaped� spheroids, Pzz

self

is negative, meaning that the mean cellular traction along the
z axis is smaller than in the reference state; the traction along
the x axis is higher and therefore Pxx

self �0. The opposite be-
havior is predicted for prolate �rodlike� spheroids. By sym-
metry, in a spherical domain there is no net polarization.

In contrast, for the axially induced case where �v is non-
zero �and we take as an example �s=�v=1/2�, the dipole
strength of each cell increases monotonically compared with
its value in the reference state; this is true even for spherical
domains, due to the force exerted by the surrounding �cell-
free� matrix. In the case of axially induced polarization, the
value of the mean cellular dipole is lowest in the random
reference state, and therefore all curves on the right panel of
Fig. 3 for the polarization relative to the reference state are
positive.

In an experiment by Eastwood et al. �17�, two configura-
tions of a rectangular fibroblast-populated gel were exam-
ined. By restraining the gel at either its opposing long or
short edge they effectively �and respectively� produced low-
and high-aspect-ratio domains. Constraining the system at
one end produces an asymmetry of the elastic field that is
qualitatively similar to the symmetry breaking resulting in
our system due to the asymmetric shape of the cellular do-
main. More explicitly, for a prolate domain oriented parallel
to the z axis, we find 	uzz

tot	� 	uxx
tot	; for example, for the limit-

ing case of a rodlike domain where the aspect ratio r→�, we
find uzz

tot=0 and uxx
tot��p0�0 �see Eq. �B8� in Appendix B�.

This means that the matrix resistance acting against an axial
compression across the long z axis of the spheroid is stronger
than that preventing a compression of its cross section �in the
x ,y plane�; and this is the reason that, in rodlike domains, the

cells align parallel to the long axis of the domain since this is
the direction in which the matrix resistance is largest. Indeed,
a similar effect was obtained in the Eastwood et al. experi-
ment by fixing only the short edges of the rectangular �the
high-aspect-ratio configuration�. Since the long axis is effec-
tively stiffer than the perpendicular �free� direction, it re-
sulted in a pronounced cell polarization in parallel to the
long axis of the sample. As noted by Eastwood et al., this
prediction is also consistent with the alignment of fibroblasts
in parallel to the long axis of tendon filaments.

B. Effect of matrix stiffness

The effect of the matrix stiffness differs in an essential
way for the two polarization mechanisms discussed in Ap-
pendix A. For the axially induced mechanism, the cell polar-
ization increases monotonically with the stiffness of the sur-
rounding matrix. This is in contrast to the orientational
mechanism in which the self-polarization first increases to a
maximal value and then decreases to zero. This behavior is
qualitatively independent of the domain shape. Figure 4 plots
the variation of the spontaneous cell polarization as a func-
tion of the ratio of the Young’s moduli, Em /Ec �for two cho-
sen values of the Poisson ratios 	m=0.5, 	c=0.3�. The re-
spective increases of the shear and bulk moduli are given by
the usual elasticity relations 
=E /2�1+	� and �=E /3�1
−2	�.

As seen in Fig. 4, the surrounding matrix must exhibit
some elastic resistance for spontaneous polarization of the
cells to occur. In the absence of a restraining field from the
surrounding matrix, no excess field uij develops in response
to the cellular compression of the reference state uij

0 , and the
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FIG. 3. �Color online� Self-polarization of cells as a function of
the aspect ratio of the cellular domain, compared for the two polar-
ization mechanisms �see Fig. 2 and Appendix A�: Orientational po-
larization ��s=0.5, �v=0�, left panel, and axially induced polariza-
tion ��s=0.5, �v=0.5�, right panel. The red �dashed�, green �dot-
dashed�, and black �solid� curves are for the xx and zz elements of
the self-polarization tensor, and its trace, Pii

self, respectively. The y
axis is normalized by the value in the reference state, �0=�xx

0

=�zz
0 =�p0 /3. In all these cases, the elastic constants of the cellular

domain and the surrounding, cell-free, matrix are identical; the
Poisson ratios are 	c=	m=0.4.
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FIG. 4. �Color online� Self-polarization of cells as a function of
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of the cellular domain. We plot the value of the self-polarization for
the two polarization mechanisms discussed in Appendix A; and for
two generic shapes of the cellular domain. Upper panels are for
disklike domains �c /a=0.2�, and lower panels are for rodlike do-
mains �c /a=5�. The red �dashed�, green �dot-dashed�, and black
curves are the xx, and zz components and the trace of the self-
polarization tensor Pii

self, respectively. The Poisson ratios of the ma-
trix and the cellular domain are 	m=0.5 and 	c=0.3, respectively.
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cells do not self-polarize. The explicit expression of the po-
larization tensor is given in Eq. �15�. The tensor A relates the
field in the cellular domain to the long-range field in the
surrounding matrix. If A is small, stress does not propagate
in the surrounding matrix. In the limit that �m /�c→0 and

m /
c→0, which corresponds to a sample with free bound-
aries, it is readily verified that A→0; and therefore Pij→0.

This result is consistent with the behavior of fibroblasts in
freely floating collagen gels �23,43�. While the cells initially
compress the gel �thus, uij

0 �0�, they appear in stellate shapes
and no development of stress fibers is seen. In contrast, when
the same gel is glued to a surface and its surface is held
fixed, well-defined stress fibers develop within the cells
�23,43�. In a symmetrically round disk, the field that “in-
duces” the development of stress fibers is isotropic in the
plane and therefore only the magnitude of the cellular dipole
increases, while its symmetry remains isotropic. In contrast,
in a cellular domain with a large aspect ratio, as in the ex-
periment by Eastwood et al. �17�, the cells polarize in paral-
lel to the long axis of the sample. In those experiments,
fibroblasts changed from a more or less round configuration
to a highly polarized structure, while simultaneously increas-
ing the force in that direction. The evidence from these ex-
periments suggests that the axially induced case is appropri-
ate to describe the observed polarization response of those
fibroblasts �Fig. 2, right panel�.

The two polarization mechanisms show different trends
when the rigidity of the surrounding matrix is increased. In
general, more rigid matrices exert stronger restoring forces
and those stronger forces give rise to the enhanced cellular
adhesiveness and contractility. In the axially induced mecha-
nism �Fig. 4, right panel�, the magnitude of cell polarization
increases monotonically with the relative stiffness of the sur-
roundings up to a maximal value. In the limit that the sur-
rounding matrix is infinitely rigid �fixed boundaries�, the
boundaries of the cellular domain are held by the strongest
possible restoring field and thus the cell polarization reaches
maximal values.

In the fixed boundary limit, the response to the initial
isotropic contraction, �pij�= pij

0 , is also isotropic. In this case,
the cellular response can therefore only be isotropic, and
Pxx

self = Pyy
self = Pzz

self as seen in Fig. 4. Since the boundaries are
fixed �and uij

a =0� the mean strain uij
tot is zero. This is easily

verified from Eq. �14� where, in the limit Cm�Cc, one finds
�ih=−I �see also Eq. �13��, which causes the second term on
the right-hand side of Eq. �14� to vanish. In this case, the
excess strain is equal and opposite to the strain in the refer-
ence state �since the forces imposed by the rigid surround-
ings require the total strain to be zero�, uij =uij

tot−uij
0 =−uij

0 ,
and from Eq. �3� we find Pij = ��p0 /3��v�ij. The saturation
value of the self-polarization is independent of the domain
shape, and depends only the volume susceptibility parameter
�v �the response to a pure volume change�, and not on the
shear susceptibility �s.

For this same reason, there is no self-polarization for in-
finitely stiff surrounding matrices for the case of a pure ori-
entational response of the dipoles where �v is zero and all
effects are due to �s alone. Thus, in the case of a purely
orientational response, both the magnitude of the restraining
field due to the surrounding matrix and its symmetry are

important. When the cellular domain is surrounded by a very
stiff environment �Em→��, the initial isotropic pulling of the
cells is counterbalanced by an isotropic field from the matrix.
This field, however, cannot give rise to a pure orientational
polarization, and the self-polarization vanishes in this case.

For intermediate stiffness of the surroundings we see once
more, in both polarization mechanisms, the tendency of the
cells to polarize along the long axis of the spheroid. For the
orientational mechanism we find an optimal ratio of Em /Ec
for which the self-polarization of the cells is largest. In gen-
eral, this value depends on the shape of the spheroid. The
higher the aspect ratio r, or the more rodlike the domain, the
greater the symmetry breaking; thus the maximum cell po-
larization occurs at lower values of Em /Ec compared with
more symmetric domains.

IV. CONCLUDING REMARKS

We have presented a quantitative model that provides a
physical explanation for the self-polarization of cells in elas-
tic substrates. Our theory takes into account both the me-
chanical forces due to the matrix as well as the active effects
that arise from the reorganization of the focal adhesions and
stress fibers in response to stress. A similar, but qualitative,
explanation was given by Nelson et al. �11� for the cellular
proliferation patterns observed in microfabricated patches of
cells on a two-dimensional gel. In our model, self-
polarization describes in a coarse-grained manner the rear-
rangement and buildup of new focal adhesions and stress
fibers that give rise to a modification of the overall cellular
dipole tensor pij; this can also include a symmetric increase
of cell contractility in all directions as observed by Grinnell
�23� for fibroblasts in a symmetrically fixed round sample.
The changes in the cellular dipole tensor are governed by the
two measurable susceptibility quantities �s and �v, which are
characteristic of the cell type and the extracellular matrix
�25�. Since these parameters reflect the long-time, steady-
state, elastic response of a macroscopically large cell-gel sys-
tem, they can be directly determined from a measurement of
the corresponding effective shear modulus 
̃= �1+�s�
 and
bulk modulus �̃= �1+�v��, or via any other combination of
these constants, such as the effective Young’s modulus and
the effective Poisson ratio �25�; the material constants 
 and
� reflect the short-time passive response of the system,
where cell activity has not yet had enough time to be estab-
lished. To observe a spontaneous alignment of the cells, the
system must exhibit some mechanical asymmetry. In our
model, this occurs because the cells are embedded in �non-
spherical� spheroidal domains. Measurement of the suscepti-
bility parameters, on the one hand, and of the mean cellular
force or the strain within the cellular domain, on the other
hand, can provide a direct test of the predictions shown in
Figs. 3 and 4, which correlate the dependence of cell self-
polarization on the domain shape and the cell and matrix
elastic properties. Finally, we note that the choice of sphe-
roidal geometry was made for mathematical convenience,
but a similar approach could be taken to examine more so-
phisticated and realistic cases in which the local strain field
changes with position, as appropriate for cells in blood
vesicles.
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APPENDIX A: THE SUSCEPTIBILITY TENSOR AND
DIFFERENT POLARIZATION MECHANISMS

The susceptibility tensor that relates the average force di-
pole density to the local stress via Pij =−��ij �Eq. �3�� ex-
presses the active response of the cells to the excess stress in
the matrix, relative to the disordered, isotropic reference
state. Since the reference state is isotropic, � must be an
isotropic tensor and �like the elastic moduli of isotropic ma-
terials� it is determined by only two scalar quantities:

�ijkl =
1

3
��v − �s��ij�kl + �sIijkl, �A1�

where Iijkl �38� is the fourth-rank unit tensor. The parameter
�v describes the response of the cellular force dipoles to a
pure volume change or isotropic pressure, Pii=− 1

3�v�ii,
while �s is the response function for a pure shear deforma-
tion, Pij =−�s�ij for i� j. A similar expression holds for �ih

�Eq. �13��, with the two parameters �v
ih= ��c−�m� /�m and

�s
ih= �
c−
m� /
m. The susceptibility tensor can also be ex-

pressed in terms of an equivalent set of parameters, namely,
� =�iiii and ��=�iij j. These elements of the susceptibility
tensor reflect, respectively, the parallel and perpendicular
cellular force response to the elastic field. At the more mi-
croscopic level, they determine the ensemble average �over
the entire cell population� of the extent of newly assembled
stress fibers and focal adhesions parallel and perpendicular to
the corresponding strain direction, respectively. Using Eq.
�A1� one finds 3� =�v+2�s and 3��=�v−�s.

Interestingly, the relation between �s and �v may allow
one to distinguish experimentally between different mecha-
nisms of cell polarization. Special choices of these param-
eters correspond to different physical interpretations of the
polarization mechanism. In this appendix, we analyze two
such mechanisms as explained below and schematically il-
lustrated in Fig. 2.

(a) Orientational polarization. In this case, only the ori-
entational distribution of the cells changes in response to an
excess stress �relative to the reference state�, but the magni-
tude of the force dipole of each cell remains unchanged. If
we idealize the cell by an anisotropic force dipole pij
= pninj, only the dipole orientation n̂ changes, but not the
dipole strength p. This may be applicable to bipolar cells,
such as muscle cells, that produce a given amount of force at
any given orientation; the magnitude of the force does not
change with applied stress, but its direction can change. Thus
these cells may polarize by changing their orientation �18�.
Since the system is initially isotropic, subjecting it to an
orientationally symmetric external stress �such as that pro-

duced by hydrostatic pressure� does not induce cell align-
ment in any particular direction and has no effect on the
polarization. We thus conclude that for this case �25�

�v = 0. �A2�

In the rotational polarization scheme � =−2��, which indi-
cates that a parallel enhancement of the force is compensated
by equivalent reduction in the force in the transverse direc-
tion.

(b) Axially induced polarization. This type of polarization
is analogous to the electronic polarization of �nonpolar� di-
electrics. In this case, the magnitude of the induced force due
to the focal adhesions and stress fibers can change in re-
sponse to an excess �applied� stress. Higher applied stress
results in more and larger adhesions and stress fibers, but
only in the direction of the excess �applied� field �hence
��=0�. This effect can be summarized by writing the polar-
ization response as Pij =��ij �where � is a scalar and not a
fourth-rank tensor as in Eq. �3��. In this case,

�v = �s = � . �A3�

Microscopically, this describes a situation in which all cells
polarize in the same direction, while the magnitude of their
force dipole increases in size. In this case, there will be a
response to an isotropic �volumetric� deformation which will
result in the development of focal contacts and stress fibers
in random directions within the cell, and therefore in a uni-
form increase in the dipolar stress in all directions, as seen,
for example, in fibroblasts in a fixed gel �23� �see below�.

The distinction between the orientational and axially in-
duced polarization mechanisms is useful for picturing the
response of cells to elastic forces in two limiting cases. How-
ever, experimental measurements in real systems could, in
principle, result in any set of values for �v and �s. In the
body of the paper, we present predictions for these two ide-
alized mechanisms and relate them to available experiments.

APPENDIX B: ANALYTIC EQUATIONS FOR DISKS,
SPHERES, AND RODS

For the three limiting cases of a spheroid, the disk, sphere,
and rod, the Eshelby tensor assumes a simple form �39�. This
allows us to write simple expressions for important quanti-
ties of interest, such as the self-polarization tensor Pij

self and
the total strain uij

tot �for zero applied field, uij
a =0�. For the

limiting cases of an infinite rod, r→�, and an infinite disk,
r→0, we find uzz

tot=0 and uxx
tot=uyy

tot=0, respectively; these re-
sults are independent of the elastic nature of the matrix �or
the cellular domain� because, in these cases, both the re-
straining matrix as well as the cellular domain extend to
infinity. For the same reason, the equations obtained from the
limiting values of the Eshelby tensor are not applicable to
describe the behavior of the cellular domain in the limits of
infinitely soft and infinitely rigid matrices �because the limit
that defines the geometry is taken before the limiting value
of the elastic constants�. For those cases, as discussed in the
text, one has to use the more general Eshelby tensor �44� for
finite domains and take the corresponding limit of the elastic
moduli.
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We define the permittivity coefficients �s=�s+1 and �v
=�v+1 �25�. In the orientational polarization, �v=1, and in
the axially induced mechanism, �s=�v; we thus find the fol-
lowing.

For free boundaries, 
m→0, �m→0,

Pxx
self = Pzz

self = 0, uxx
tot = uzz

tot =
�p0

9�c
. �B1�

For fixed boundaries, 
m→� , �m→�,

Pxx
self = Pzz

self =
�p0

3
��v − 1� , uxx

tot = uzz
tot = 0. �B2�

Otherwise, for disks,

Pxx
self =

�p0

3

2
c��s�3�v − 2� − �v�
3�v�c + 4�s
c

,

Pzz
self =

�p0

3

4
c��v − �s�
3�v�c + 4�s
c

,

Pii
self =

�p0

3

12
c�s��v − 1�
3�v�c + 4�s
c

, �B3�

uxx
tot = 0, uzz

tot =
�p0�v

3�v�c + 4�s
c
; �B4�

for spheres,

Pxx
self = Pzz

self =
1

3
Pii

self =
�p0

3

4
m��v − 1�
3�v�c + 4
m

, �B5�

uxx
tot = uzz

tot =
1

3
uii

tot =
�p0

3

�v

3�v�c + 4
m
; �B6�

for rods,

Pxx
self =

�p0

3

3
m��v − 1� + 
c��v − �s�
3�c�v + 
c�s + 3
m

,

Pzz
self =

�p0

3

3
m��v − 1� + 
c��v�3�s − 2� − �s�
3�c�v + 
c�s + 3
m

,

Pii
self =

�p0

3

3��v − 1��3
m + �s
c�
3�c�v + 
c�s + 3
m

, �B7�

uxx
tot =

�p0�v

2�3�c�v + 
c�s + 3
m�
, uzz

tot = 0. �B8�
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